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ABSTRACT

(*)

where

(_)

For _ > 2, define

t

V _ V (r,t,f) = 22-_(4_1_/2(F(_/2-111"i[_ S (r,t-y)f(YldY],
_ 0

S (r,t) = (4_t)-m/2exp (-r2/4t). For @ < 2, define

U9 = U@(r,t,f) = r2-@V4_@(r_t_f).

The functions V and U@ are solutions of the radial heat

equation [D_ + _ r- 1Dr]U(r,t) = Dtu(r,t ) for _ = _ and

= @ respectively. Moreover, when e = 3, 4, 5, ... , the

bracketed quantity in (*) (denote it by H(r,t)) represents the

temperature in a e-dimensional medium with H(r,O+) = 0 for

r > 0 and into which heat is liberated at the rate f(y) per

unit time from y = 0 to y = t. Thus, for arbitrary e > 2,

V can be related to a generalized diffusion process with

source f(t).

D.V. Widder has developed an expansion theory for

solutions of the equation

D_u(r,t) = Dtu(r,t ),

where u(r,O+) = O_ u(O,t) = f(t).

The function U O has the property that

Uo(r,O+,f ) = O, Uo(O_t,f ) = f(t). We develop expansion

theorems, analogous to those of Widder, for the function U O.
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The solution U0 is represented in terms of the set of radial

time functions [u(_,h,r,t)], _ < 2, h > -i, where

u(_,h,r,t) = U (r,t,th/F(h+l)).

Theoremsare developed which relate the asymptotic behavior

of U@ and the time average of U@ to the behavior of the

function f(t) and its Laplace transform. By meansof (**)_

similar theorems are obtained for the function V .

We examine several sets of special solutions which have

been used in expansion theories for the radial heat equation.

It is proved that the radial time functions and the elements of

these several sets have a commonform_ involving confluent

hypergeometric functions.
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i

INTRODUCTION

D. V. Widder [12] has developed necessary and sufficient

conditions for the validity of expansions of solutions of the

equati on

(l.la) D2u(r,t) : Dtu(r_t), r > 0, t > 0,

where

(l.lb) lim u(r,t) : 0, r > 0; lim u(r,t) = f(t); t > 0.
t_0+ r_0

This theory uses two basic sets of special solutions of (l.la):

[Tn(r,t ))_n=O and [Un(r_t))n= O. The first set was defined

earlier by _ Poritsky and R. _ Powell [ii]. Explicitly_
t

(1.2) Tn(r,t ) = 2 _0 k(r't-y)yn/n' dy3 r > 0, t > 0,

where k(r_t) = (4_t) -I/2 exp (-r2/4t) is the fundamental

source solution of (l.la). These authors show that

(1.3) Tn(0,t ) = tn+i/2/F(n+3/2),

therefore

(1.4)
t

Tn(r,t) = _0 r(t-y)-ik(r_t-y)Tn(0'y)dy"

D. V. Widder defined the element Un(r,t ) of the second set by

(1.5) Un(r,t) = Tn_i/2(r,t).

It then follows that

i
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(l.6)

and

Un(O,t ) = tn/n!,

t

(i.7) Un(r't) = _0 r(t-y)-ik(r't-y)Un(O'y)dy"

Thusthef_notion_n(r,t)(U(r,t))maybe interpretedas

the temperature of the semi-infinite bar 0 < r < _, in which

Tn(r,O ) = 0 (Un(r,O) = O) for r > O, and the point r = 0

is maintained at the temperature given by (1.3) ((1.6)) for

t>O.

The major results ?)elating to the expansions of solutions

of the problem (l.la)-(l.lb) are the following:

(I) The expansion

co

(1.8) u(r,t) = Y [ajTj(_,t) + ]j=O bjUj (r,t)

converges to a solution of (l.la) for

if

(1.9)

where g(y)

(if)

(l.la)for

0 < t < T; if and only

oo

u(r,t) = _ok(r+y,t)g(y)dy,

is an entire function of growth (2, I/4T).

The expansion (1.8) converges to a solution of

0 < t < _ if and only if (1.9) is valid for g(y)

an entire function of growth (i, q).

(III) If a. = O, j = O, i, 2, ..._ in (1.8), then the
J

function g(y) in (1.9) is an even function.

(IV) If b. = 0, j = O, i_ 2, ..., in (1.8), then the
8



3

function g(y) in (1.9) is an odd function.

Of fundamental importance is deriving these results is

the replacement of the integrals in (1.4) and (1.7) by

equivalent integrals which are analytic for Irl < _.

In this thesis3 we are concerned with the radial heat

equation

(i.i0) A u(r,t) = D t u(r,t),

where A = D 2 + --_- i D . When _ = n_ a positive
r r r

integer_ the operator An is the n-dimensional Laplacian in

radial coordinates. In particular, we develop results analogous

to (1)-(IV) for solution of (l.iO) of the form

(i.ii)

and

V (r,t,f) = 2---\_/1_/22-t_'h' [_ Sl_(r,t-y)f(y)dy] , for t_2,

where

(1.12) U#(r,t,f) = r 2-t% V4_k(r,t,f), for I_ < 2,

St%(r,t ) = (4_t) -#/2 exp (-r2/4t)
is the fundamental

source solution of (i.i0).

When _ = 3,4,5,..., the bracketed quantity in (i.ii)

(denote it by H(r,t)) represents the temperature (or in the

case of a general diffusion process - the concentration) in a

_-dimensional medium with H(r,O+) = 0 for r > O, and into

which heat is liberated at the rate f(y) per unit time

from y = 0 to y = t. Thus for arbitrary _ > 2,



V(r,t,f)

process with source f(t).

It is shownthat lim U (r,t,f) = O, and that, if f(t)t_O+

is absolutely integrable and continuous from the left on (O,M),

then lim U (r,t,f) = f(t) for 0 < t < M. Defining the
_0 _

set of radial time functions [u(_,h_r,t)], _ < 2, h > -i, by

maybe interpreted in terms of a generalized diffusion

(1.13) u(_,h,r_t) = U (r,t_th/r(h+l)),

results analogous to (1)-(IV) are obtained by expanding

solutions of the form (1.12) in terms of the set

[u(_,m/2,r,t)]m= 0. It is shown that the function u(_,h,r,t)

can be defined in terms of confluent hypergeometric functions.

This allows us to develop integral representations for the

radial time functions which are analytic for lr I < _.

However; certain integral representations are valid only for

special combinations of h and S, and we are then limited

to examining expansions of the form

(1.14) u(r,t) : E aju(_,j+i/2,r,t) +

J=h 0

E b. u(_,j,r;t).

j=hlJ

In (1.14), unlike the development in [14], h0 and hI are

non-negative integers depending on _. Nonetheless; if

k(r+y,t), in (1.9), is replaced by K(r,t;y), a more

complicated kernel involving Bessel functions; it is shown that



results (1)-(IV) are valid when (1.8) is replaced by (1.14).

Moreover, when _ = i, then h0 = hI = 0 in (1.14) and our

results reduce to those given in [14].

We examine the asymptotic behavior of U (r,t,f).

Theorems are developed which relate the behavior of U (r,t,f)

and time averages of U (r,t,f) to the asymptotic behavior

of the function f(t) and of its Laplace transform L[f].

A typical theorem is the following: Let f(t) be a non-

negative function and let L[f] = foe-Stf(t)dt converge for

s _ O. If there exist constants c _ 0 and C such that

L[f] _ C/sc as s _ 0+, then

t

ct -I _/_(r,y,f)dy N ctC-i/F(c), as t _ _

By means of formula (1.12), theorems pertaining to

integral representations, expansion theorems, and asymptotic

behavior of the function V4__(r,t ) are obtained.

When _ = 2, solutions of (i.i0) which have logarithmic

singularities in a neighborhood of r = 0 are obtained by

modifying the definition of U (r,t,f). The methods used for

examining series representations for _ < 2 are also modified

to obtain similar results when _ = 2. Someof the asymptotic

results are also extended to this case.

P.C. Rosenbloomand D.V. Widder [12] madea detailed

study of the validity of expansions for solutions of (l.la), for

-_ < r < _ in terms of two sets of special solutions:
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(a) the set of heat polynomials (Vn(r,t)}n= 0 and (b) the set

of associated functions [Wn(r_t)}n= O. These authors develop

expansion theorems which show that

(A) expansions in terms of heat polynomials are valid in

a time strip Itl < _ in which the solution satisfies a

Huygen's principle while

(B) expansions in terms of associated functions are valid

in a half-plane t _ _ > 0 in which the solution has certain

entireness properties.

Several methods are given for determining the coefficients in

these expansions 3 and the L2 theory of such expansions is also

examined.

More recently L.R. Bragg [2] has developed results

analogousto (A)and(B)forsolutionsof equation(l.lO)

when _ > i. This theory also uses two sets of special

solutions: (a) the set of radial heat polynomials

[RK(r,t)}K= 0 and (b) the set of associated functions

[_(r,t)}K= 0

The expansion theorems given in [2] were developed independ-

entlyby D.T. Haimo [8] using the sets [Pn_(__l)/2(r,t)] _n=O

and [Wn, C__l]/2(r,t)]n=0..._ Analogous results for the

L 2 theory of such expansions were also developed [9].

It is shown that the radial time functions and the elements

of these several sets of special solutions have the common

form
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(1.15) G(r,t) = cthF(h+t_/2, t_/2, r2/4t) exp (-r2/4t).

Here_ c_ h, and _ are parameters independent of r and t,

and F(a,b,z) is a confluent hypergeometric function with

parameters a and b.

In section 2, we develop integral representations for the

functions U (r,t,f) and V (r,t,f) and obtain some of their

basic properties. In section 3, a detailed study is made of

the properties and integral representations of the radial

time functions. The asymptotic behavior of U (r,t,f) and

V (r,t,f) is developed in section 4. In sections 5 and 6,

expansion theorems for the finite and infinite time intervals

are developed, and in section 7, these results are extended to

solutions of (I.i0) when _ = 2. In section 8, after examining

the theories associated with several sets of special solutions

of (i.i0), it is shown that the elements of those sets all have

the form (1.15). The Appendix contains all of the results about

confluent hypergeometric functions which are used in sections

1-8. The notation (A-n) is used to refer to the nth

equation in the Appendix.
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INTEGRALREPRESENTATIONS

H. Poritsky and R.A. Powell [ii], in examining the

one-dimensional heat equation_

special solutions of the form

(2.1)

Here

Urr(r_t ) = ut(r_t), studied

Tn(r,t ) = 2Sl(r,t ) * (tn/n'.),

r > O_ t > O_ n = 0_ i_ 2_ ....

Sl(r,t ) = (4_t)-i/2ex-p (-r2/4t) and _',-

convolution operation defined by

t

(2.2) f(t) * g(t) = SO f(t-y)g(y)dy.

The authors show that

(2.3)

therefore

(2.4)

In this form Tn(r_t )

the semi-infinite bar

Tn(O,t ) = tn+i/2/F(n+3/2),

Tn(r,t ) = [rt-iSl(r,t)] * Tn(O,t ).

denotes the

may be interpreted as the temperature in

0 < r < _. When t = 0 the temperature

in the bar is zero at all points r > O. For t > O_ the end

of the bar at r = 0 is maintained at the temperature given by

the function (2.3).

Formulas (2.1) and (2.4) each have the form

(2.5) u(r,t) = c[tar b exp (-r2/4t)* f(t)].

The following theorem shows that the radial heat equation

8
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_2 _-i _ _u(r, t)
(2.6) --2+ u(r,t)=

_r r _t

also has solutions of the form (2.5).

Theorem 2.1. Let the function

integrable on (O,T) with T < _.

points t E (O,T) at which f(t)
T

_olf(t)Idt > O, then equation (2.6) has a solution of the

form (2.5) in the region

f(t) be absolutely

Let Q be the set of

is continuous. If

R(_) = [(r,t)lr > O, t _ _

only if

(2.7a) a = (1_/2) - 2, b = 2 - t_

or

(2.7b) a = - I_/2, b = O.

(2.8)

if and

Proof. Writing (2.5) in integral form s it follows that

t

u(r,t) = c _O(t-y)arb exp (-r2_(t-y))f(y)dy.

f(t) is absolutely integrable on (O,T), the integralSince

in (2.8) exists when t E (O,T). Also differentiation under the

integral sign with respect to either r or t is permissible

in R(2) since f(t) is continuous on 2. Substituting the

form (2.8) into equation (2.6) and simplifying, we have

(2.9)

where

(2.10)

G(r,t;a,b) * fi(t) = O,

G(r,t;a,b) = exp (-r2/4t)[(b41_/2+a)ta-lr b

- b(bal__2)tarb-2 ].
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r

If condition (2.7a) or (2.7b) holds then G(r,t;a,b) e 0 and

(2.9) is satisfied. This completes the proof of sufficiency.

From [i0], page 15, footnote (2), it follows that if f(t)

and g(t) are integrable functions and if f * g = O, then

at least one of the functions f and g is equal to zero

T

almost everywhere. By hypothesis _0 If(t) Idt > O, thus

equation (2.9) is satisfied only if G(r,t_a,b) = O al_st

everywhere. In view of formula (2.101 this is onf_v possible

when a and b satisfy the following pair of equations:

(2.11) b(b+ _ - 2) = O,

(2.12) b + (_/2)+ a = O.

The only solutions of equation (2.11) are b = 2 - k_ or b = O.

From equation (2.12), the corresponding values of a are

a = k/2 - 2 or a = - _/2. These are the alternatives stated

in the theorem. This completes the proof.

When k < 2, choose c = 2_-2/F(1-_/2) in formula

(2.5). Let a and b be given by condition (2.7a). Then

(2.5) defines a solution of equation (2.6) which is denoted by

(2.13)
U (r,t)-- U (r,t,f) 2_-2(4_)_/2 [t)2-k )]= F(l _/2) ( S (r,t)'_'-f(t ,

where S (r,t) = (4_t)-k/2 exp (-r2/4t)

of equation (2.6).

is the source solution



Ii

2-_
When p > 2, choose c = 2 /F(_/2 - 1) in formula

(2.5). Let a and b be given by condition (2.7b). These

choices define a solution of equation (2.6) which is denoted by

(2.Z4) V (r,t) t,f) 22-_(4_)_'/2---V(r, = r-r-_7_--:-_ [ s (r,t) _ f(t)].

Unless stated otherwise it is assumed that _ < 2 in any

expression for U (r,t) and that

for V (r,t).

Theorem 2.2. If a > O,

> 2 in any expression

then U2_ a(r,t) = raV2+a(r,t).

The proof of this theorem follows immediately from

formulas (2.13) and (2.14).

In integral form s formula (2.13) becomes

2_-2 t 2-i_

(2.15) U(r,t) = ff(1-_/2) _0 (r)
exp(-r2/4z ) f(t-z)dz.

_/2
z

Introduce the change of variable y = r2/4z

(2.16)

to obtain

-yy-_/2f (t_r2/4y)dy"
U (r,t) = [F(1-_/2)] -1 _r2/4t e

We now use formula (2.16) to examine, in detail, the

properties of U (r,t). Then, using Theorem 2.2, similar

results are obtained for V (r,t).

Theorem 2.3. Let the function f(t) be absolutely

integrable on (O,T) with T < _. Then
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(2.17) lim U (r,t) = O, pointwise for r > O.
t_O+

Proof. Introducing absolute values on both sides of

(2.16), it follows that

(2.18)
IU (r,t)l <_ [r(l-_/2)] -1 _r2/4t_ e_yy2__/2y_ 2

If(t-r2/4y) Idy.

Since lim e- y2-_2v / = O,

y_

by some positive constant

y.

the function e-Yy 2-_'J2 is bounded

M, for sufficiently large values of

In (2.18), y varies inversely with t, hence

oo

(2.19) lim IU (r,t)l < M lira _ 2 Y-21f(t-r2/4y) IdY"
t_O+ -- t_O+ r /4t

2
With the change of variable z = t - r /4y_ the inequality

(2.19) becomes
t

lim IU(r_t)I <_ M lim _ If(z)Idz = O.
t_O+ t_O+ 0

In the following theorems_ we examine the behavior of

U (r,t) as r* O.

Theorem 2.4. Let the function f(t) be Lipschitz

continuous with exponent a_ 0 < a < i_ on the interval

[O_T] with T < _. Then

(2.20) lim U (r,t) = f(t), if 0 < t < T.
r_O _
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Proof. Let U (r,t) be given by (2.16). Define

(2.21) U (r,t) = [r(i-_/2)]-I _ 2 e-YY-P/2f(t) dy"

:r /4t

Consider the function l(r,t) defined by

(2.22)
l(r,t) = Ui(r,t ) - U (r,t)

: [r(l-_/2)]
-1 _r2/4t_ e-Yy -_/2[f(t)_f(t_:r2/4yldy.

Introducing absolute values; we find

(2.23) II(r,t)l <_ [F(l-_/2)]-l]_2/4te-Yy-_/21f(t)-f(t-:r2/4y)by.vr

Since f(t) satisfies a Lipschitz condition on [O,T],

If(t) - f(t - r2/4y) I < M(r2/4y) a. Substitute into (2.23) to

obtain

(2.24) IT(:r,t)r__ [F(I-_/2)]-!M(r2/4) a Sr2/4te-Yy-p/2"ady.

Integ:ration by parts yields the inequality

(2.25) II(:r,t)l < _b2-_ exp (-:r2/_t)
- 4a(4t) 1-ti/2-a (li/2+a_i)F (1,11/2)

Mr2a co
e-yyl-ti/2- ady,

+ (1-11/2-a)F(l-ii/2) 1":r2/4 t

p:rovided -_/2 - a _ -l.

Hence
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(2.26) lim lm(r,t)l = o, if t > o, - k/2 - m_ -m.
r-_O

If - _/2 - a = -i, the integral in (2.24) reduces to

(2.27)

co

El(r2/4t) = _ 2 e-Yy-ldy"

r/4t

From [i], page 2292 (5.1.ii.)2 it follows that

(2.28) l l(z)l < + lln zl _ e z

where # is Euler's constant. Replace z by r2/4t in

(2.28) and substitute for the integral in (2.24). Then,

2a 2a
ll(r,t)l < M [_r2a+r lln(r2/4t)l + r

4%(i-_/2)
and

exp (r 2/4t) ],

(2.29) lim Iz(r2t)l = o, if t.>o_ - _/2- a=-m.
r*O

From (2.22), the definition of l(r2t)2 we conclude that:

(2.30) lim U (r2t) = lim U (r#t)2 if t > O.
r_0 _ r*0

By definition (2.21)2 the right hand limit in (2.30) is f(t).

This completes the proof.

Definition 2.1. A function f(t) is continuous from the

left on the interval [a,b] if and only if lim f(T) = f(t)

T_t"

whenever t C (a2b].
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Theorem 2.5. Let the function f(t) be continuous from

the left and bounded on [O_T] with T < _. Then

(2.31) lim U (r,t) = f(t), if 0 < t < T
r-_ 0 _ -- "

Proof____u Let the point tO E (O_T] be fixed. Since f(t)

is bounded on [O;T]; there exist constants m; M such that

m < f(t) < M for t E [O,to]. Since f(t) is continuous from

the left at to; given c > O; there exists a 6 > O; such

that If(t O ) - f(t) I < c when 0 < t O - t < 6. Define a pair

of functions fl(t), f2(t) (see Figure l) by

(2.32)

fl(t) =

and

(2.33)

f2 (t)

fM ](t_to_36/4) [f(to)+e- M
L _/2

f(t O) + ¢

, o<t <t o-3_/4

+ M, t0-36/4<t<t0-6/4

, t O - 6/4 < t < to,

m

= (t-to+36/4)

f(to) - ¢

, 0<t<t 0-36/4

If6__(to)-e-m]+ m, t0-36/4<t<_t0-6/4

, tO - 6/4 < t <_ tO .

By construction f2(t) < f(t) < fl(t), and

(2.34)
U_(r,t,f 2) < Ul_(r,t,f) < U (r,t,fl)o

Set t = t O in (2°34), then
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f(t)

M

m

0

tf
2 (t)

fl(t)

_t

FIGURE i

Graphs of the functions fl(t) and f2(t). The graph of the

function f(t) lies in the shaded region.
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(2.35) lim U (V,to,f2) <
r_ 0

lim U (r,to, f ) <
r_ 0

lim U (r,to, fl).
r-_ 0

By construction, the functions fl(t) and f2(t) satisfy the

hypothesis of Theorem 2.4 on the interval [O, to]. Applying

the results of that theorem to (2.35), it follows that

(2.36) f(to) - S lim U (r,to, f ) <_ f(to) + ¢.
r-_ 0

Since c is arbitrary and tO is any point in (O,T], the

proof is complete.

Theorem 2.6. Let the function f(t) be continuous from

the left and absolutely integrable on [O,T] with T < _. Then,

(2.37) lim U (r,t) = f(t), if 0 < t < T.
r_ 0 _

Proof. There are two cases to consider depending upon

whether or not f(t) is finite at the point in question.

Case (a) - f finite.

let f(to) = M < _. Since

left at to, there exists a

N O such that

[FN(t)}_=No

Let to C (O,T] be fixed and

f(t) is continuous from the

60 > 0 and a positive integer

If(t)l < N O when 0 < tO - t <_ 60 . Let

be a sequence of functions with

(2.38)
N , if f(t) > N

FN(t) = f(t) , if If(t)lS N

-N , if f(t) < -N



18

T

Define @N = _ If(t) - FN(t) Idt" Then the sequence
0

is monotone decreasing with limit zero. Let e > 0

Choose a positive integer K such that

[gN]_:No

be given.

(2.39a) K > NO ,

and

(2.39b)

where

(2.40)

oKc(_)
6
0

(1-t_/2)1-1_/2e____ (_/2-1)

c(_) = r(1 ---FT_)-- _ "

Consider the function

(2.41) I(r,t) = Ut_(r,t,f ) - Ut_(r,t,FK).

From definition (2.13), it follows that

(2.42) II(r,t)l< %(r,t If-FKI)

1](t) Sl_(r,t)* If(t)-FK(t) •

Consider (r/t)2-PSp(r,t)

2
It has a maximum when r

[2(2,_)]l-_/2exp (_/2-i) Substitute into (2.42) to obtain

t (4_) _/2

as a function of r for fixed t.

= (2 - p)2t and this maximum is

t
I

(2.43) IT(r,t)l<_C(_)#0 t -y If(y) - FK(Y)IdY,

where C(_) is given by (2.40). From condition (2.39a)
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and the definition (2.38) of FK(t), we find that

If(y) , FK(Y) I - 0 when y E [to - 60 , to]. Thus, with

t = to, the inequality (2.43) becomes

to-doIf(y)- ;K(y)f

(2.44) II(r_to)I<__C(_)_0 to_Y dy.

Replace i/(to-Y )

y C [0, to -60].

by 1/60, its maximum when

Then

If(y)- FK(Y)IdY.

The integral in (2.45) is bounded by @K"

(2.39b), it follows that

(2.46) l_(r,to)I<__.

From condition

Since e

(2.47)

is arbitrary, we conclude from formula (2.41) that

lim Ug(r,to_f ) = lim U (r,tO,FK).
r_O r40

By construction_ FK(t ) satisfies the hypothesis of Theorem

2.5. Apply the conclusion of that theorem to the right member

of (2.47) to obtain

(2.48) lim U (r,t0,f) = FK(t0) = f(to)-
r_0

let

Case (b) - f infinite. Let tO E (O,T] be fixed and

f(to) = _. Since f(t) is continuous from the left_ for
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each integer N > 0 there exists a 6N > 0 such that
co

f(t) >_ N when 0 <_ to - t < 8N. Let [GN(t)]N= I be a

sequence of functions with

(2.49) f(t)GN(t) = N

0 _ t <_ t O - 8N

to - 8N < t < to.

Then GN(t ) <_ f(t) on [O,to], and U (r,tO, GN) < U (r,to,f)

so that

(2.5o) lira U (r,t0_G_T)_,<_ lim U (r_to,f), N = i, 2, 3, ....
r_0 r_0

By construction GN(t ) satisfies the hypothesis for case (a)

of this theorem. Apply the conclusion of case (a) to the limit

on the left of (2.50) to obtain

(2.51) an(t0) = _ <_lim _(r,to,f),
r_O

N = i, 2, 3, ....

Thus, the limit in (2.51) is

If f(to)---_,

f(t) is replaced by

-i_ we find

(2.52) - lim U (r,to,-f) < -N,
r_O

_- coo

the inequality (2.51) is valid when

-f(t). Then, multiplying (2.51) by

N = i, 2, 3, ....

But the expression on the left of (2.52) is just

lim U (r,to, f). Thus lim U (r,to,f) = - _. This completes
r*O r_O
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the proof.

In examining the behavior of U (r,t,f) as r _ O,

was restricted to the interval [O,T] with T finite.

T = _j we have

Corollary 2.1. Let the function f(t)

from the left and absolutely integrable on

t

If

be continuous

[0,_). Then

(2.53) lira U (r,t,f) = f(t), if 0 _ t _ _.
r_O

Proof. Let t O E (0,_) be fixed. Then condition

(2.53) follows for the interval 0 _ t _ tO by setting T = tO

in Theorem 2.6. Since tO is arbitrary, this completes the

corollary.

Removing the restriction that

the left_ we have

Corollary 2.2. Let the function

integrable on (0,_). If the function

defined for 0 _ t _ _, then

f(t) be continuous from

g(t) be absolutely

f(t) = lim g(_) is

T-t-

(2.54) lira U (r,t,g) = f(t), if 0 < t < _.

r_0

Proof. By construction f(t) = g(t) almost ever_q4here on

(0,_). From (2.13), it follows that U (r,t,g-f) = O, if

0 < t < _. Hence_

(2.55) lira U (r,t,g) = lim U (r,t_f).
r40 # r40
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But

limit on the right of (2.55) is f(t).

Remark. It is not necessary that

either Corollary 2.1 or Corollary 2.2.

f(t) : I 02j

f(t) satisfies the condition of Corollary 2.1, and the

lim f(t) exist in

For example_ if

, j < t < j+2 -2j, j = 0, i_2,...

ot herwis e

see Figure 2, the conclusions of Corollaries 2.1 and 2.2 are

valid. The ssme situation holds if g(_) is any function

absolutely integrable on [0,i] and f(t) is defined on [0,_)

by f(n + _) = 2-ng(_), n = 0, i, 2, ... _ 0 < _ < i.

The following theorems develop similar properties of the

solution function V (r,t).

Theorem 2.7. Let the function f(t) be absolutely

integrable and continuous from the left on [0,_). Then, if

pointwise if r > O_

is given by (2.14),

lim V (r,t) = O,
t*0+

V (r,t)

(2.56)

and

(2.57) lim r_-2V (r,t) = f(t), if 0 < t <_.

r*O

Proof. Set _ = 2 + a in Theorem 2.2 to obtain

(2.58) U4__(r,t ) = r_-2V (r,t).

From (2.17), it follows that
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f(t)
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FIGURE 2

Graph of the function f(t).
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(2.59) lim U4__(r,t ) = 0 = r_L-21im V (r_t),
t_(_F t_O+ _

pointwise if r > O.

This shows that (2.56) is valid. Combining formula (2.58) and

the result (2.53), it follows that

(2.60) lim U4__(r,t ) = f(t) = lim r_-2V (r,t), if 0 < t < _.
r_O _0

This proves (2.57).

For _ > 2; the following result ccrresponds to Corollary

2.2.

Corollary 2.3. Let the function

integrable on (0,_). If the function

defined for 0 < t < _; then

g(t) be absolutely

f(t) = lim g(_) is

T_t-

(2.6l) lira r_-2V (r,t,g) = f(t), if 0 < t < _.

r_O

The following examples illustrate the theoremsdeveloped
I

in this section.

.Example i. With _ < 2 define

f(t):

From definition (2.13) a solution of equation (2.6) has the

following integral representation:



25

'i
i •

(r,t)=

.-[F(I-_/2) ]-12_-2H0 J'_e"r2/4yy-_/2(r/y)2-_dy_ O<t<_T

[r(l-_/2) l-ip-2[_j]e-r2/_yy-_/2(r/y)2-_dy

t

+ _l_Te-r2/4yy-_/2(r/y)2-_yl, T<t.

Simplifying these expressions, we find

(2.62)

_ (r,t) :

[ [F(I-_/2) ]-iH0r(l-k/2,r2/4t)_ 0 < t <_T

J
[F( l-k/2 ) ] - 1 [ H1F ( 1-t_/2,r 2/4t )+(H0-H 1)F( l-k/2, r2/4T ) ],

T<t.

Here F(a,z) is the complimentary incomplete g_mma function

given by

CO

(2.63) r(a,_) = _ e-tta-ldt, a > Oo

Z

From formula (2762) we can easily verify the conclusions of

Theorem 2.3 and Theorem 2.5. That is

and

lim U (r,t) = O, r > 0

t_ 0_ _

lim U (r,t) = I HO'

r_ 0 _ [HI,

O<t<T

T<t

Example 2. With f(t) = tK, K = O, i, 2, ... ,

formula (2.16) becomes



26

U (r,t,t K) = [U(l-_/2)]-I _ e-Yy-_/2(t_r2/4y)Kdy"

r2/4t

!i_i

ii

Using the binomial theorem and interchanging summation and

integration signs, we find

K K

(j)(-r2/4t
(2.64) U (r,t,t K) = F(I-_/2) j_=0

 r2/4t

If (l-_/2-j) > 0, for j = O, i, ..., K, it follows from

(2.63) that

(r,t_tK) = tK K _K)
U F(IL'_/2) j=O_ J (-r2/4t)Jr(l-_/2-J' r2/4t)"

If l-_/2-j _ 0 for some values of j between 0 and K, the

corresponding integrals in the sum (2.64) cannot be interpreted

directly in terms of (2.63). In these cases, successive

integration by parts will produce an integral which can be

evaluated in terms of (2.63). Hence, U (r,t,t K) can always

be written as a finite sum of tabulated functions.
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TWO BASIC SETS OF SOLUTION FUNCTIONS

x ¸

Let us now examine two sets of solutions of equation (2.6).

The first is the set of radial time functions

[u(_,h,r,t)]. The elements of this set are defined by

(3.1) u(_,h_r,t) = U (r,t,th/r(h+!))_ _ _ 2 and h _ -i.

The elements of the second set [v(_L,h,r_t)) are defined by

(3.2) V(l_,h_r,t) = V (r,t,th/F(h+l))_ I_> 2 and h > -I.

At this point, the function u(_L,h,r,t)

for r _ O.

follows that

(3.3)

is defined only

However, if we substitute (2.16) into (3.1)_ it

1 -yy- /2(t-r2/ y)h
U(l_,h,r,t) = r('l_,l'/2) #r2/4t e F(h+l) dy,

Thus (3.3) provides a representation for u(_h,r,t) which is

analytic for Irl < _.

Example 2 in section 2 shows that the right side of (3.3)

can be expressed as a finite sum of tabulated functions when

h is a non-negative integer. The following theorem proves

that (3.3) can be expressed in terms of a single tabulated

function whenever h > -I.

Theorem 3.1. Let u(_h,r,t) be given by (3.3) for

27

i •
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t_<2

(3.4)

and h > -i. Then;

the-r2/4t

U(l_,h,r,t) = r-__ _(h+l_/2, 1_/2_ r2/4t),

where 9(a;b; z) is the confluent hypergeometric function

defined in the Appendix, formula (A-3).

Proof. In (3.3), introduce the change of variable

y : r_/_t. The_

(3.5) _(_,h,r,t) = r"(1-_/2)r[h+--Y7

A comparison of (3.5) with (A-1l) shows that by making the

a = h + i; b = 2 - _/2, and z : r2/4t, it followschoices

that

(3.6)
the-r2/4t(r2/4t)l-l_/2

u(_,h,r,t) : r(1 - _/2) _ (h+l'2-'u/2'r2/4t)"

A similar comparison of (3.6) with (A-9) shows that by making

the choices a = h + _/2, b = _/2, and z = r2/4t we obtain

(3.7)
the-r2/4t

u(_,h,r,t) = r(l-p/2)
#(h + t_/2, I_/2, r2/4t).

This is precisely formula (3.4).

Although (3.4) is valid when h > -i, the right hand

member of (3.4) is defined for all real h. That is, even

though the integrals in (3.3) and (5.5) do not converge if
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L

h < -i_ formula (3.4) provides an extension to real h of the

definition for u(_,h.r,t) given in (3.1). In the following

theorem, we examine the properties of the function given in (3.4)

when h is real.

Theorem 3.2.

real. Then

(A)

(B)

(c)

Let u(_,h,r;t) be given by (3.4) for h

u(_,h,r,t) satisfies equation (2.6),

mim u(_,h,r,t) ='0, if r J O,
t_ (_

if h _ -i, -2, -3, ... ; lim u(_,h;r,t) = th/r(h+l),
r-_ 0

t > O, and

for

(D) if h = -i, -2, -3, ... , lim u(_;h,r,t) = O, for t > 0.

r_ 0

_oof of (A).

with respect to z

Let z = r2/4t"

by '. Set

and denote differentiation

(3.8) F(z)= ¢(h+ ,/2.,/2._).

Then, (3.4) becomes

(3.9) u(_,h,r,t)= [r(i-_/2)]-lthe-ZF(z).

From formula (3.9), it follows that

D u = [r(l-_/2)]-ith-le-Z(r/2)[F'(z)-F(z)],
r

D2u = [F(l__/2)]-Ith-le-Z(i/2)[(r2/2t)F"(z)+(l.r2/t)F,(z)
r

+ (r2/2t-l)F(z)],

and

Dtu = [I_(i-I_/2)]-lth-le-Z[-zF' (z)+(z+h)F(z)].
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Substitute these expressions into equation (2.6) to obtain

(3.1o) zF"(z)+ - : O.

This is precisely the confluent hypergeometric equation (A-I)

with parameters h + _/2 and _/2. Since F(z) is given by

(3.8), it satisfies equation (3.10) identically for all real

values of h and _. This completes the proof of (A).

Remark. From the proof of (A) it is clear that if ](z)

is any confluent hypergeometric function with parameters h+_/2

and _/2, then a solution of equation (2.6) is given by

cthe-r 2u(r,t) : /_1__4t_7(r2/4t). We will make use of this fact in

section 8.

that

Proof of (B). From formulas (3.4) and (A-14), it follows

the-r2/4t

lim u(_,h,r,t) = lim F(IIB/2) (r2/4t)-h-_/2 = O, if r{O.
t-+ 0+ t-_ O+

Proof of (C). From formula (3.4), we have

(3.11) th lim e-r2/4tg(h+_/2,_/2,r2/4t).lim u(_,h,r,t) : _I-TTI7U_..T6T
o r-_ 0

When _ < 2 and h _ -i, -2, -3, ... , choose b : _/2,

a = h + _/2, and z = r2/4t in Table 2, (e), (f); or (g)

(depending on the actual value of Z). In each case, by

applying the appropriate formula for 9(h+_/2,_/2,r2/4t); (3.11)

reduces to



31

t h r(l-_/2) = th/F(h+l).lim u(g,h,r,t) = F-_I--_2-_ " F(h+l)r-->0

Proof of (D)± When _ < 2 and h = -i, -2, ..., -K, ...,

(3.4) becomes

t-Ke -r2/4t

(3.12) u(_,-_r,t) : 'r(l-_/2) ¢(-X+_/2,_/2,r2/4t).

A comparison of (3.12) with (A-13) shows that the choices

a = -K + _/2, n : K-I, and z : r2/4t

(3.13) u(_,-X,r,t) = (---!!)--_-l(K-1)'t-K
r(l-_/2) (4t) l-'u/2

Since lim l_lT_/2)(r2/4t)
r-_ 0

that lim u(_,-K,r,t) = 0,
r-_ 0

Corollary 3.1. When _ < 2,

is a constant if

t > 0.

lead to

t > 0, it follows

there exist solutions of

(2.6) with the property that u(0,t) = lim u(r,t) = 0.

t_ 0+

Proof. By properties (B) and (D) of Theorem 5.2., the

set [u(_,-K,r,t)]K= I provides a countable collection of such

solutions for each value of S < 2.

In the following theorem an integral representation is

developed for radial time functions of the form u(_,m/2,r,t),

m = 0, I, 2, .... This representation is used to determine

what solutions of equation (2.6) have valid series representations

of the form



32

¢o

(3.1_) _(r,t) = z
m=O

% _(_,m/2_r,t ).

Theorem 9.3. Let b < 2 and let m be a non-negative

integer such that m + b > 0. Then,

= rl-_/2e-r2/4t _e-Z2/4tzp/2%/2_ l(rz/2t)
(3.15) u(_,m/2,r,t) _/_ F(1-p/2)

Proof.

making the choices a = h + _/2_ b = _/2, and

follows that

e-r2/4t2_/2rl-_/2

(3.16) u(p,h,r,t) = F(1-_/2)F(h+l)r(h+_/2-7 "

[ F(m__#£+l_]iL _m-tdz
r-_4_/2_ __, "

A comparison of (3.4) with (A-10) shows that by

z = r2/4t, it

_e-Y(ty)h+_/4-l/2%/2_z(r yl/%-l/2)dy,

if h + _/2 > 0. If h = k, a non-negative integer_ introduce

the change of variable _2/4 = ty. From the identity

F(2k+l) = 4k_-l/%(k+i/2)F(k+l), it follows that

(3.17) u(p, k,r,t) =

rl-p/2e-r2/4t

tJ_ r(1-_/2)
_e-C_2/4t_/2K/2_ l(rc_/2t) •

dLo, if k + _/2 > 0.

_en m = 0, 2, 4, ..., and k = m/2, (3.17) reduces to
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i "

(3.15) and is valid for m + _ > O.

If k is a non-negative integer and h = k + I/2_

introduce again the change of variable _2/4 = ty in (3.16).

Using the identity r(2k*2) =22k+l_-i/_(k+l)r(k+3/2), it follows

that

(3.18) u(_,k+i/2,r,t)=
rl-_/2e-r2/4t

t J_ r(m-_/2)
_e-_ 2/4t_/2K/2-1(r_/2t)'

r _LLt  2(k+i/2) ] _, if k+1/2 +_/2>o.

the function v(_h_r,t)

Theorem 3.4. With

given by

If m = i, 3, 5, ... and k + i/2 = m/2, then (3.18) reduces to

(3.15) and is valid when m + _ > O. This completes the proof.

The following theorem develops corresponding properties for

when _ > 2.

> 2 and h real_ let v(#,h,r_t) be

(3.19)

r2-_the-r2/4t

v(_,h,r,t) - V_-72_I ) '. _(h+2-_/2,2-_/2_r2/4t).

Then the following statements are valid.

(A)

(B)

(C)

(D)

(E)

Formulas (3.19) and (9.2) are identical when h > -i.

If a > O, then _.(2-a,h,r_t) = rav(2+a_h_r,t).

The function v(_h_r,t) satisfies equation (2.6).

If r _ O_ lim v(_,h_r,t) = O.

t-_ O+

If h / -i_ -2, -3_ ... _ Jim r_-2v(_h_r_t) = th/r(h+l)_

r->O
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for t _ O.

(F) If h = -I, -2, -3, ... , lim r_-2v(_,h,r_t) = O, for t > O.

r_ 0

Proof of (A). Choose _ = 2 + a in Theorem 2.2. Then

(3.2) becomes

2-_ h

(3.20) v(_,h,r,t) = r U4__(r,t,t /r(h+l)), for h > -I.

Applying definition (3.1) and Theorem 3.1 to the right member of

(3.20) we obtain for_mla (3.19).

Proof of (B____ Since Theorem 3.2 extended the definition

(3.4) of u(b,h;r,t) to include all real h, the validity of

statement (B) follows from a comparison of formula (3.19) with

(3.4).

Statements (C), (D)_ (E), and (F) are immediate consequences

of statement (B) and Theorem 3.2, results (A), (B), (C), and (D)

re sp ectively.
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ASYM_TOTIC BEHAVIOR OF SOLUTIONS FOR LARGE t

We now examine the asymptotic behavior of the functions

U (r_t_f) and V (r,t_f) in terms of the behavior of *'(t)

as t -->_. Results are obtained by two methods. The first

method uses results from the theory of Laplace transforms

which relate the asy_%ototic behavior of a function to that of

its Laplace transform and vice versa. The second method uses

definitions (2.13) and (2.14) and relates the asymptotic

behavior of the ftu_ctions h(r3t_f) and _q(r,t,f) to the

special solutions defined in section 3.

The following notation is used to describe the asymptotic

behavior of a function. By the expression f(x) : O(g(x)) as

x--> Xo; we understand that the quotient If(x)/g(x)I is

bounded in some neighborhood of Xo; and by the expression

f(x) = o(g(x)) as x -_ Xo; we understand that

lira f(x)/g(x) = O. A functior, f(x) is asymptotic to the

x-_ x0

function g(x) as x _Xo, written f(x)--g(x)as x-_Xo,

if and only if f(x) = g(x) + O(g(x)) as x -_ xO. In using

the 'big O' or 'little o' notationj the phrase 'as x-_x O' is

omitted when there is no ambiguity about the point XO"

The following theorem is a restatement of [13]_ p. 182,

Corollary is. It relates the asymptotic behavior of a f_nction

to that of its Laplace transform.

35
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that

(4.1)

Theorem 4.1. If there exist constants

f(t)- ct°-I/r(c),

CO

and if 7(s) = _0 e-stf(tldt

(4.2) Y(S) ,*.., C/s c

as t -_j

c > 0 and C such

converges for s > O, then

, as s -_0_.

Remark. Forlm_la (4.2) does not imp]j (4.1) even when f(t)

is restricted to non-negative values. For example, choose

f(t) = t + t cos t. Then, f(t) is not as}uuptotic to t.

However T(s) = i/s 2 + (s2-1)/(s2+l) 2, and Y(s)N i/s 2 as

s _0+.

The following theorem is a restatement of [13], p. 192,

Theorem 4.3. It provides a partial converse to Theorem 4.1.

Theorem 4.2. If the function a(t) is non-decreasing and

the integral g(s) : _oe-Stda(t) converges for

there exist constants c > 0 and C such that

s _0+, then a(t) N ctC/F(c+l) as t _.

We now apply these results to the functions %(_,t,f) and

f(t). Definition (2.13) expresses U (r,t,f) as a convolution

integral. From [7], P. 146, (29), it follows that

(4.3) LEU(r,t,f)]: ( ) Kl_g/2(rd_ )7(s).

In this expression_ _(s) denotes the Laplace transform of f(t)

and Ka(Z ) is the modified Bessel function of the second kind

s > O, and if

- c/s °
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with index a. We now prove

Theorem 4.3. Let f(t) be a non-negative function and let

O0

f(s) = _oe-Stf(t)dt converge for s > O. If there exist

constants c > 0 and C such that f(s) _ C/s c as s -_0+_

then

(4.4)

and

t

° _o%(r,¥,f)_ Ct c-I

t

r [u(r,y,f)-f(y)]_yJO

t

c-i
= o(t ), as t _.

If, in addition to the above hypotheses, f(t) N ctC-1/F(c) as

t -_ then

t

c "o_U (r,y,f)dy- f(t)= o(tC-l), as t--_.(4.6)

Proof of (4.4). Since f(t) __ O, it follows from (2.13)
t

that U (r3t;f) __ O. Choose a(t) = _f_(r,y,f)dy in Theorem

4.2. Then;

(4.7)
g(s) : _oe-Stda(t) = L[U (r,t,f)].

By hypothesis Y(s) _ C/s c as s _0+. Substituting (4.3) into

last member of (4.7)_ we find

(_.8) g(s)_c/sc, as s_0+.

Since a(t) satisfies the hypotheses of Theorem 4.2., it

follows that
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(4.9) a(t) _ ctC/r(c+l), as t -_.

Formula 4.4 is obtained by multiplying both sides of (4.9) by c/t.
t

f (y)dy. Then b(t)
Proof of (4.5). Define b(t) = _0

satisfies the hypotheses of Theorem 4.2 since (i) b(t) is

oo oo

non-decreasing, (ii) g(s) = _oe-Stdb(t) = _oe-Stf(t)dt converges

for s >0, and (iii) g(s)_C/s c as s _0+. As a

consequence of Theorem 4.2,

(4.1o) b(t)--otC/r(c+l), as t

Formula (4.5) is obtained by subtracting (4.10) from (4.9).

Proof of (I[.6_. In this case,

(4.11) f(t) = ctC-1/F(c) + ¢(t)t c-l,

where e(t)-->0 as t _. Subtract (4.11)from (4.4)to obtain

formula (4.6).

In the following theorem we describe the asymptotic behavior

of the function U (r,t,f) in term_ of the radial time functions

discussed in section 3.

Theorem 4.4. Let the function f(t)

integrable on (O,T) for each T E (0,_).

constant e > O such that

be absolutely

If there exists a

f(t) _ tC/r(c+l) as t -_, then

(4.12) U (r,t,f) -- u(_,c,r,t), as t -_ _, r > O.

Proof. By hypothesis f(t) = tC/F(c+l) + ¢(t)t c, where

¢(t) ->0 as t ->_o Let ¢O > 0 be given. Choose M > 0
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such that Ic(t)l< Co/F(c+l) when t > M. Define

2_-2 (t)2-_ exp (-rSI4t)a(r,t) = r-Ui_-_7_7 t_7_ " When t > M, it follows

from definition (2.13) that

M

(4.._3) $(r,t,f) = Sof(y)a(r,t-y)d_

t

+ jrM[YC/r (c+!)-_c(y)y' c ]G(r,t-y)dy

M

[f(y)-yC/r (c+!)]a(_,t-y)dy=j
0

t t

+ Io[YC/r(c+l)]G(r,t-y)dy + jrMC(y)yCG(r,t-y)dy

M

= u(_,c,r,t) + ]'o[f(y)-yC/r(c+l)]G(r,t-y)dy

t
C "- d

+ _(y)y a(r,t y) y.

Consider G(r,t) as a function of t for fixed r. It has a

maximum when t = r2_2-b) and this maximum is

2_-212(4-_)]2-g/2exp _ For r > O, it follows that

2r(i__12)
M M

II0[f(y)-yC/r(c+l)]G(r,t-y)dy I < CI _o[If(y)l+yC/r(c+l)]a_ < c2,

where CI and C 2 are positive constants depending on r.

Moreover, Ic(t)I < CO/F(c+l) when t >_ M, so that

t t

(y)yG(r,-Y)dYl< _0]'0lJ'_ c, t [yc/r(c-+.1)]a(r,_-y)dy= Co u(_,o,r_t).
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Substituting these expressions into the last member of (4.13), it

follows that

IU (r,t,f) - u(_c,r,t)l < C2 + cO u(_,c,r,t).

Since u(_,c,r,t) > O, we have

U (r,t,f)-u(_,c,r_t) C2

From Theorem 3.1 and Table 2, (e), (f), or (g) (depending on the

size of _.); it fo!lows that

i te_ if= lim
lim u(_,c_r,t) F--(-_" t-*_

r>O.

Hence, if c > O, it follows from (4.14) that

(4.15) lim

t_

U (r,t,f),u(_,c,rjt)
< CO.

Since £ o is arbitrary, the limit in (4.15) is zero.

completes the proof.

This

For the function V (r,t_f) we have

Theorem 4.5. Let f(t) be a non-negative function and let

oo

Y(S) = _0 e-stf(t)dt converge for s > O. If there exist

constants c > 0 and C such that _(s) _ C/s c as s -_0+,

then

(4.16)

t

o _0v_(r,y,f)<rr2"_Ct°-l
t _ --V_7----'

and
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J

t

o[V(r,y,f)r2- f(y)lay
(4.17) t = o(te-l), as t-_.

If, in addition to the above hypotheses; f(t)-" _ ctC-i/F(c)-- -

t-> _, then

t

e oV (r,y,f)dy
(4.18) y _ - r2-_If(t) : o(tC-l), as t-_.

as

Proof. Replace _ by 4- _ in formulas (4.12), (4.13),

2-_
and (4.14). Multiply these formulas through by r and use

Theorem 2.2 to obtain (4.16), (4.17), and (4.18) respectively.

By a similar argument we can prove

Theorem 4.6. Let the function f(t) satisfy the

hypothesis of Theorem 4.4. Then

(4.19) V (r,t,f) _ v(s,c,r,t)_ as t-_, r > O.

with

The following examples illustrate the theorems developed in

this section.

Fmample i. Choose f(t) : t + t cos t in Theorem 4. 3 .

From the Remark following Theorem 4.1, it follows that f(t)

satisfies the hypotheses of only the first part of Theorem 4.3

c = 2 and C = i. Formulas (4.4) and (4.5) become

t

2 _^U (r_y,t+t cos t)dy

t _ t,

and
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t

_o[U (r,y,t+t cos t)-(y+y cos y)]dy

= o(t), as t-_ co.

From this example, it is clear that the condition

f(t) _ ctC/r(c+i) is sufficient but not necessary for the

validityof formulas(4.4)and (_.5).

Example 2. Define a unit step function H(t) by

O _t < 0
_(t)= i/2,t= o

_i _t > 0

In Theorem 4.3, choose f(t) = _ an-lH(t-nk), with lal < i

n:l

(see Figure 3) Then f(t) 1• N_-/_ and, using [1]; p 1025,

(29.3.66)_ Y(s) = i/s(ekS-a). Thus the hypotheses of both parts

of the theorem are satisfied with

Formulas (4°4)-(4.6) become

t

h(r'y'f)dy i
t _ it-g'

and

t

loh(r,Y,f)dY
t

- f(t)=

c : i and C = i/(l-a)..

t

o[U (r,y,f)-f(y) ]dy

t
= o(i),

as t-_ oo.
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f(t)

o

!

k

a

i .l _t

2k 3k

FIGURE 3

co

Graph of the function f(t) = Z an-iH(t_nk).

n=l
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EXPANSION THEOREMS FOR THE FINITE INTERVAL 0<t<T

We now determine which solutions of equation (2.6) can be

represented in a series of the form

co

(5.1) u(r,t) = _ [aku(_k,r,t ) + bkU(_k+i/2_r,t)].
k=O

In this and the following section_ necessary and sufficient

conditions are developed in order that a solution of (2.6) have

a series representation of the form

co co

(5.2) _(r,t)= z aku(_,k,r_t)+Z bku(_k+l/2,r,t).
k=h 0 k=h I

Here h0 and h I are non-negative integers depending on S.

We then have the result that a solution of (2.6) has a

representation of the form (5.1) if and only if

h0-1 hl-i

u(r,t) = 7 aku(_,k_r,t ) + E bkU(_,k+i/2,r,t ) +_(r,t), where
k=O k =0

_(r,t) is given by (5.2). In order to develop these expansion

theorems_ we need some results pertaining to entire functions.

Definition 5.1. A function f(z) is of growth (p,q) if

and only if

(5.3) f(z) = o(exp (IzlP_/_))_as z _>_o,

44
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for any @ such that 0 < @ < i. For exsmple: the functions

sinh 3z 2, exp(z l+I/z) and z5 all have growth (2:3).

Let f(z) and F(z) be entire functions defined by

(5.4) f(z) = _ cnznln:_ F(z) = _ ICnlznln:.
n=O n=O

Then the growth of the functions f and F is determined by

sequence [ICnl] _ .the
n=O The specific res_ts we need are that

the functions defined in (5.4) have gro_bh (2:a) if and only if

(5.5) lim sup Icnl2/n < o_q_
n N e

n_

they have growth (l,q) if and only if

(5.6) limsupIonll/n _ _.
n_oo

We examine expansions in terms of the sets of radial time

functions [u(_k_r,t)]k= 0 and [u(_,k+i/2_r,t)]k= 0 separately.

The main theorem is obtained by combining the two results.

Theorem 5.1. Let _ < 2 and let

such that h0 + Z/2 > O. A function

of the form

h0 be the least integer

u(r;t) has an expansion

(5.7) u(r,t): _ %u(_,k_r,t),
k=h 0

which converges for 0 < t < T; if and only if
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(5.8) u(r,t) exp (-r2/4t) Co (- _ T ,r,o,y)g(y)_y.
tj_ F(1-_/2) °0 _

Here, g(y) is an even entire function of growth (2,1/4T)

defined by

(5.9) r(k+l/2) y2k
g(Y) ; _ % F(_T_-/_y " _ '

k=h 0

and.

(5.1o) T (r,t,y) = e-Y2/4ty"/2rl-_72K/2_i(ry/2t).

Proof. Sufficiency. Substitute (5.9) into (5.8) and apply

Theorem 3.3 with m = 2k. We formally obtain the series (5.7).

Since T (r,t,y) is positive for r, t, and y _ O, the

term-by-term integration needed to derive the series (5.7) is

valid if

(5.1l)
co

T = lot (r,t,y)a(y)_y<co.

Here, G(y) is obtained from g(y) byreplacing

in (5.9). Write (5.11) in the form

(5.12)
m M

I = J_oTl_(r,t,y)G(y)dy + j_ T (r,t,y)G(y)dym ta

ak by Iak

co

+ J_MTI_(r, t,y)G(y)dy.

Denote the integrals in (5.12) by Ii, 12, and 13 respectively.

For sufficiently small y, (5.9) sho_¢s that



47

r(ho+l/2 ) 2ho
Y

a(y) - lahol ho+,/2):

(9.6.9) that

y /2 /2_l(ry/2t/ N 2 Y '

It follows from [i], p. 375,

as y _ 0+.

Thus when r { 0 and t > 0 are fixed, and m is sufficiently

small

m 2(h0+_/2)-i

(5.13) I1 N C _J dy.

We conclude that the integral II is finite. The function g(y)

and, hence; G(y) has growth (2,1/4T). When M> 0 is

• 2

sufficiently large, it follows from (5.3) that G(y) < ey /4T@

when y _ M and @ is any number between 0 and i. Also,

for sufficiently large y, if r { 0 and t > 0 are fixed,

y_/2rl-_/_ /2_l(ry/2t ) is bounded by some positive
then

constant C2. Then, for M sufficiently large

2

(5.14) i3 < C2 _ e-y (1/4t - i/4T@)dy"
M

It is clear that this integral exists and is finite if

0 < t < @T for arbitrary @ such that 0 < @ < i. Finally,

since T (r,t,y)G(y) is a bounded continuous function of y on

the interval [m,M], 12 is finite. This fact, combined with

(5.13) and (5.14) prove the validity of (5.11) when 0 < t < T.

Necessity. Assume the validity of the •representation

(5.7). The function u(_,k,r,t), as given by (3.4) is an even

function of r. Since
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lim u(_,k,r_t) exists for t > O_

r*O

co

(5.15) u(O,t) = Y aktk/k:.

k=h 0

i

By h_pothesis_ this series converges for 0 < t < T.

Stirling's formula to the series (5.]5), we obtain

I1/nIan i
(5.16) lim sup <

n -- _"
n -_ co

Applying

Use formula (5.5) to examine the gro_h of g(y), as given by

(5.9). Since only even powers of y are involved, replace n by

2n, and C2n by anF(n+i/2)/F(n+_/2 ) in formula (5.5).

Simplifying, we have

(5.17) lim sup lanll/n < "_.
n -- e

n_co

A comparison of (5.16) and (5.17) shows that g(y) has growth

(2,1/4T). It follows that the integral in (5.8) converges

absolutely if 0 < t < T. Therefore, the interchange of

summation and integration signs needed to obtain (5.8) from

(5.7) is valid. This completes the proof.

co

For expressions in terms of the set [u(_,k+i/2,r,t))k=O,

we have

Theorem 5.2. Let _ < 2 and let hI _ 0 be the least

_+l
integer such that hI +-_-- > O. A function u(r:t) has an

expansion of the form
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(5.18)
co

_(r,t)= Z bku(_,k+i/2,r,t),
k=h I

which converges for 0 < t < T3 if and only if

(5.19) u(r_t) = e-_:P-_(---r--2_-4t---)-

co

_ r (1-_/2) [°'o_
(r,t,y)h(y)_y.

Here, T (r,t,y) is given by (5.!0) and h(y) is an odd entire

function of grov_h (2,1/4T), defined by

(5.2o) h(y) =
2k+l

Z b k r((k+z/2)+ii2) y

k:hj_ _-G-Tf_-%-F_)---" T_v_7':"

Proof. Sufficiency. Substitute the series (5.20) into the

integral in (5.19) and apply Theorem 3.3 with m = 2k + i. We

formally obtain the series (5.18). The term-by,term integration

needed to derive the series (5.18) is valid if

co

(5.21) J = _0T(r,t,y)_(y)dy < co,

where H(y) is obtained from h(y) by replacing b k by lbkl
in (5.20). The same argument that was used to prove inequality

(5.11) can now be used to show that the inequality (5.21) is

valid for 0 < t < T.

Necessity. Evaluating the series (5.18) at r = O, we

obtain

(5.22)

co

u(O,t) = _, bktk+l/2/F(k+3/2).

k=h I
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From the identity F(k+i/2) = _i/2F(2k+l)/4 F(k+l),

that

it follows

2

(5.23) u(o,t)= 4ti/2_-1/2 _ 4_(k+l)'b_tk/(2k+2):.
k=h 1

By hypothesis_ the series (5.2_) converges for 0 < t < T.

Stirling's formula to the series in (5.23) to obtain

(5.24) lira sup Ibn ll/n__ <i_ .
n -- eT

n-_oo

Apply

Use formula (5.5) to examine the growth of h(y), as given by

(5.20). Since only odd powers of y are involved_ replace n

by 2n + i and C2n+l by b F((n+i/2)+i/2)
n" __]-- in formula (5.5).

Simplifying_ we have

(5.25) lim sup Ibn II/n < I..

n -- e
n_

A comparison of (5.25) with (5.24) shows that h(y) has growth

(2,1/4T). It follows that the integral in (5.19) converges

absolutely if O < t < T. Therefore the interchange of

summation and integration signs needed %o obtain (5.19) from

(5.18)is valid.

The main result of this section is obtained by combining

Theorems 5.1 and 5.2.

Theorem 5.3. Let _ < 2 and let

least integers such that hO + _/2 > 0

A function u(r_t)

hO and hI _ 0 be the

and hI + (_+1)/2> O.

has an expansion of the form
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co oo

(5.26) u(r,t) = Z aku(_,k,r,t) + 2] bkU(_,k+i/2,r,t),

k=h 0 k=h I

which converges for 0 < t < T, if and only if

(5.27)

co

u(r_t) = ex_:) (-r_)_ foT,_(r,t,y)f(y)dy"t ,_ r(=-_/2)

Here T (r,t,y) is given by (5.]_0) and f(y) is an entire

Ikuqction of growth (2_I/4T) defined by

(5.28) Co r(_+__zZ2)y2k
f(Y) = 2] ak _-_2-_j "('_k-')T +

k=h 0

co

2] b k -[ (k+l) y2k+l

k=hl r-T__7_T _."

It is clear that f_mction defined by the series (5.26) satisfies

equation (2.6) for O < t < T. Moreover, lim u(r,t) = 0 if

t_O+

oo Co

r ¢ O, and u(O,t)= 2] aktk/k' + 2] bktk+i/2/F(k+3/2).

k=h 0 k=h 1

When S > 2, we have

Theorem 5.4. Let _ > 2 and define _ = 4 - _. Let h0

and hI >_ O be the best integers such that h0 + _/2 > 0 and

hI + (_+i)/2 > O. A function v(r,t) has an expansion of the form

(5.29)

co co

v(r,t)= 2]akv(_,k,r;t)+ X bkv(_,k+l/2,r,t),
k=h 0 k=h 1

which converges for 0 < t < T, if and only if the function

u(r,t) = r_-2v(r,t) has an expansion of the form (5.26) which

converges for 0 < t < T.

Proof. Necessity. Since u(r_t) = 2_-2v(r,t) and u(r_t)

also has an expansion of the form (5.26), it follows that
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co

v(r,t) = r2-d)u(r,t) = Z akr 2-_u (4-c0,k, r,t )

k=h 0

co

+ Y: bkr2"_u(4-_,k+l//2,r,t).

k=h I

With a = 2 - _# apply Theorem 3.4, statement (B) to the

terms in the series (5.30). We then obtain formula (5.29). A

proof of sufficiency is obtained by reversing the steps in this

argument.

The following examples illustrate the theorems developed in

this section.

Example i. In Theorem 5.1_ set p = l-2m with
2

m = O, I, 2, Then h0 m. Choose g(y): (_y2)me_Y

with _ > O. Then g(y) is an entire function of growth (2,d).

In the notation of formula (5.9)

(4o)kF (k-m+i/2)F (k+!)

It follows that a solution of equation (2.6) has the series

expansion

(4_)_ (k-m+I/2)F (k+l)

(5.31) u(r,t) = TI ---_r(-i--_- _- U(l_,k,r,t),
k=m

which is convergent for 0 < t < i/4o. An integral representation

for this solution is given by

u(r,t) = .rm+i/2exp__ _oe-y2/4tyl/2-mKm+i/2(ry/2t)g(y)dy.
t _#_ F(m+i/2)
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From [i]_ p. 444_ (10.2o17) and (10.2.18), it follows that if

z >_ O_ Km+i/2(z) = (_/2z)i/2eZPm(i/z), where Pm(y ) is a

polynomial of degree m in y. Then_

(5.32) u(r_t) ((_r)m " _ 2 2= [ e-(r+y) /4tymp (2t/ry)e_y dy.
t--_2T' (re+i/2) _0 m

From this series (5.31)_ we have

(5.33) (4o)kr(k-_+!2) -i/2........ ,'-i_L_tk
u(O_t) = g F_l_2"_F_k-m+l) = (4°t)m(l-4gt) "

k=m

This series converges for 0 < Itl < i/_. If _ < O; g(y) has

growth (2_ loI) and the integral (5.32) converges for all t > 0

_himetheseries(5.33)eonvergesonlywhen 0 < Jtl< i/4bJ.

This example shows that the integral (5.8) and the series (5.7) may

converge on different intervals_ each of Which contains the

interval (O,T).

Example 2. Set m = 0 in example i. Then _ = i

and g(y) = exp (oy2). Moreover _(O_t) = (l-_at) -I/2 and the

P -(r+y)2/4teGy2dy.
integral (5.32) reduces to u(r,t) = ''/<#0j-1-2 JO e

Introducing the change of variable;

_ = (l-4°t)i/2[r+Y--+ 2r_]'2_/t" l-4_t it follows that

u(r,t) = (l-4_t)-i/2exp (_r2/(l.._t)) erfc (r[4t(l-4_t)]-l/2).
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EXPANSION THEOREMS FOR THE INFINITE TIME INTERVAL

We now develop theorems which determine what solutions of

equation (2.6) can be represented by the series (5.2) for

0 _ t _ _. This _s achieved by introducing suitable

restrictions on the growth of the coefficients ak and bk.

Theorem 6.1. Let _ _ 2

such that h0 + _/2 _ O.

property that

Let

(6.1) lim sup fan II/n 2: q •

n-_ co

and let h0 be the least integer

[ak)_=ho_ be a sequence with the

A function u(r,t) has an expansion of the form (5.7), which

converges for 0 ( t (_, if and only if

(6.2) u(r,t)- exp (-r2/4t)

t _ r(l-_/2) "_0 T_(r't'y)g(y)dy"

Here, T (r,t,y) is given by (5.10) and g(y) is an even entire

function of growth (l,q) defined by (5.9).

Proof. Substitute the series (5.9) into (6.2). Applying

Theorem 3.3 with m = 2k, we formally obtain the series (5.7).

The term-by-term integration needed to derive the series (5.7) is

valid if

(6.3) J =  oT( ,t,y)a(y)dy<

Here G(y) is obtained from g(y) by replacing

54
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ak by

(6.4)

Iakl in (5.9). Write (6.3) in the form

m M

J = SoT (r,t,y)a(y)dy + _ T (r,t,y)a(y)dy

¢o

+ _MT_(r, t,y)G(y)dy.

Denote the integrals in (6.4) by Jl' J2' and J3 respectively.

Then, a comparison of formula (6.4) with (5.12) shows that

Ii = Jl and 12 = J2' hence the integrals J! and J2 are

finite. The function g(y) and; hence, G(y) has growth

(l;q). From formula (5.3), it follows that for M sufficiently

large G(y) < e qy/@ for y > M; where @ is any number between

0 and i. Also, for y sufficiently large, if r _ 0 and

t > 0 are fixed; then y_/2rl-_/2K /2_l(ry/2t ) is bounded by

some positive constant C. Thus, for M sufficiently large,

2

_M -Y _Y_d(6.5) J3 < C exp (--_ +--_) y.

Clearly; the integral in (6.5) is finite for O < t < _. It

follows that the inequality (6.3) is valid.

Necessity. Assume that formula (6.1) is valid. Use

formula (5.6) to examine the growth of g(y), as given by

(5.9). Since only even powers of y are involved, replace

by 2n and C2n by anF(n+i/2)/F(n+_/2 ) in formula (5.6).

Simplifying, we have

n
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(6.6) lim sup lan ll/2n _ _.
n-¢oo

A comparison of (6.1) and (6.6) sh_s that g(y) and, hence,

G(y) have growth (l,q). It follows that the integral in

(6.2) converges absolutely for 0 _ t _ _. Therefore, the

interchange of summation and integration signs needed to obtain

(6.2) from (5.7) is valid. This completes the proof.

For expansions in terms of the set [u(_,k+i/2,r,t)k=O , we

have

Theorem 6.2.

integer such that

Let _ _ 2 and let hie O be the least

be a
hI + (2+i)/2 _ O. Let [bn) =hl

sequence with the property that

(6.7) lim sup Ib II/n 2
n = q '

n-_eo

A function u(r,t) has an expansion of the form (5.18),

which converges for 0 < t < _, if and only if

(6.8) u(r,t) = _ J" (r,t,y)h(y)dy.
t o

Here, T (r,t,y) is given by (5.10) and h(y) is an odd

entire function of growth (l,q) defined by (5.20).

The proof of this theorem, being similar to that of

Theorem 6.1, is omitted.

The main result of this section is obtainedby combining

Theorems 6.1 and 6.2.
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Theorem 6.3. Let _ < 2 and let h 0 and hI _ 0 be the

least integers such that h0 + _/2 > 0 and hI + (_+i)/2 > 0.

Let [an}_=ho and [bn]n=hl be sequences with the property

that

(6.9) limsup lanl m/n limsup ' Im/n 2= Ibn = q I

n_co n_co

A function u(r,t) has an expansion of the form

(6.10) u(r,t)=
co Co

_ aku(_,k,r,t) + E bkU(_,k+i/2,r_t),

k=h 0 k=h I

which converges for 0 < t < Co, if and only if

2 Co

(6.11) u(r,t) = exp (-r /4t)_ T (r,t,y)f(y)dy.

tJ_ r(l-_/2) °o _

Here, T (r,t,y) is defined by (5.10) and f(y) is an entire

function of growth (l,q) defined by (5.28).

Clearly, the function defined by the series (6.10)

satisfies equation (2.6) for 0 < t < Co. Moreover,

lim u(r,t) = 0 if r _ 0 and
t_0+

Co

u(O,t) = _ aktk/k! + _ bktk+l/2/r(k+3/2).
k=h 0 k=h I

When p > 2, we have

Thearem 6.4. Let _ > 2 and define _ = 4 - _ . Let

h0 and hI >_ 0 be the least integers such that h0 + _/2 > 0 and

h I + (_+i)/2 > 0. Let [ak}k=h0 and [bk}k=hl be sequences

which satisfy condition (6.9). A function v(r_t) has an
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expansion of the form

co co

v(r,t) = 7 akv(_k_r,t ) + E bkV(_,k+i/2;r,t), which

k=h 0 k=h I

converges for 0 < t < co, if and only if the function

u(r,t) = r_-2v(r,t) has an expansion of the form (6.10)

convergent for 0 < t < co.

The proof of this theorem is identical to that of Theorem

5._.

The following examples illustrate the theorems developed in

this section.

Exs_ple i. Let 0 < _ < 2. Then h0 = 0

co

u(r,t): z
k=O

in Theorem 6.1.

A comparison of (6.12) with (5.7) shows that ak

k = O, i, 2, .... Hence lim sup lanl I/n = i.
n-_co

(5.9) it follows that

= i,

From formula

co

g(y)=
k=O

y2kUEyr.,

Since g(y) has growth (i,I),

solution of (2.6) for 0 < t < co.

the series (6.12) converges to a

t
Moreover u(O,t) = e . From

(6.2), an integral representation for u(r_t) is given by

(6.13) u(r_t) = (2)I-_/2
exp(-r2/4_t)
t r(l-_/2)

co

0 [exp(-y2/4t)]yK /2 l(ry/2t )1 /2_ l(y)dy.
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The integral in (6.15) cannot be evaluated in closed form. How-

ever, using the identity Ka(Z ) = (_/2) csc (a_)[l a(Z ) + la(Z)] ,

substitute into (6.13) and use [3], P. 197, (22) to evaluate

the integral containing the product I /2_l(ry/2t)! /2_l(y).

We obtain

(6.14) _(r,t) = etr(_/2)(r/2)l-_/21/2_l(r )

_ (r/2)i-_/2 r,(_/2) exp (-r2/4,t)
2t

_e-y2/4tyIl__/2 (ry/2t)l/2_ l(y)dy.

In this form_ u(r,t) is expressed as the difference of

positive functions.

t
.Example 2. Let _ = i in example i. Since u(O,t) = e ,

an integral representation for u(r_t) is given by formula

(2.15) and we have

t

_(r,t) = _ __0e_ (-r2/_y). exp (t-_

(9)_ it follows that

t (e [_ ]

u(r,t) e -r r r= _- erfc -_ + e

dy. From [5], p. 45,

!
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EXTENSION OF RESULTS TO THE CASE _ = 2

We now extend the results of the previous sections to

solutions of equation (2.6) when _ = 2. In this case,

solutions have a logarithmic singularity in the neighborhood of

r = O. Provided that appropriate modifications are made, we carl

use the techniques developed in earlier sections to study these

solutions.

7.1 Integral Representations.

In Theorem 2.1, conditions (2.7a) and (2.7b) each reduce to

a = -i, b = O_ when _ = 2. Making these ehoices_ set c = i

in formula (2.5). Then (2.5) defines a solution of e_lation

(2.6) for _ = 2. We denote this solution by

(7.1.i)

where

(7.1.2)

Y(r,t,f) = 4_[S2(r,t)*f(t )],

S 2(r,t) = (4#c)-lexp (-r2/4t).

An integral form, formula (7.1.1) becomes

(7.1.3)
t

Y(r,t_f) = _j-lexp (-r2/4y)f(t-y)dy.

Introducing the change of variable z = r2/4y_ it follows that

6O
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co

(7.1.4) Y(r,t_f) = _r2/4te-Zz-lf(t-r2/4z)dz.

Theorem 7.1.1. Let f(t)

(O,T) with T < _. Then,

be absolutely integrable on

(7.1.5) lim Y(r,t,f) = O_
t_O+

if r>O.

Proof. Introducing absolute values on both sides of

(7.1.4)_ it follows that

(7.1.6)

co

IY(r,t,f) I <_ _r2/4t(e-Zz)z-21f(t-r2/4z)Idz.

Since lim e-Zz = O; the function e-Zz

Z-_O

is bounded by some

positive constant M for sufficiently large values of z. Hence

co

-2 1f(t-r2/4z) Idz(7.1.7) mira IY(r,t,f)[ < M lim _ _ z
t_O+ -- t_O+ r_/4t

With the change of variable y = t - r2/4z_ the inequality

(7.1.7) becomes

(7.1.8)
t

lim IY(r,t,f) l <_ M lim _ If(y) ldy = O.
t_O+ t_O+ 0

We now examine the behavior of Y(r,t,f) as r _ O.

co

Lemma 7.1.1. If _(r,t,f) = 7r2/4te-Yy-lf(t)dy,

lim _'--"'_kr_f) f(t), if t > O.
2 =

r_O -in r

then



62

Proof. From the definition of Y(r,t,f) and [i], p. 229,

(5.1.11), it follows that

co

(7.1.9) _(r,t,f) = f(t)[-_-in(r2/4t)- _(-l)n(r2/4t)n/n(n., )],

n=l

where _ is Euler's constant.

Since

oo

I _ (-l)n(r2/4t)nln(n')I <_ exp (r2/4t): we find that
n=l

lim Vf__,r,t,f, = f(t), if t > 0
2

r_O -in r

Theorem 7.1.2. Let the function f(t) be Lipschitz

continuous with exponent a, 0 < a < 13 on the interval

Y(r,t,f) = f(t), if 0 < t < T.[O,T] with T < _. Then lim 2
r*O -in r

Proof. Let _(r,t,f) be the function defined in Lemma

7.1.1. Let Y(r,t,f) be given by (7.1.3). Define the function

J(r,t) by

(7.1.10) J(r,t) = _(r_t,f) - Y(r,t,f).

The argument used in Theorem 2.4 to prove that iim i(r,t) = 0
r_O

can now be used to prove that lim J(r:t) = O. Then, from

r*O

definition (7.1.10), it follows that

(7.1.ii) lim _Ir't'f) Y(r,t,f)
J 2 = lim 2 "

r_O -in r r*O -in r

By Lemma 7.1.1, the limit of the right member is f(t). This

completes the proof.
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]

By repeating the arguments of Theorems 2.5 and 2.6_ it can be

shown that the conclusion of Theorem 7.1.2 is valid when f(t) is

continuous from the left and absolutely integrable on [O_T] with

T < _. Corresponding to Corollary 2.1_ we have

Corollary 7.1.1. Let f(t)

absolutely integrable on [0,_).

O<t<_.

be continuous from the left and

Then lim Y(r,t,f) = f(t),
2

r_O -in r

if

7.2 Expansion Theorem Preliminaries.

A comparison of definition (7.1.1) with (2.13) shows that

(7.2.l) Y(r,t,f)--

Define the function y(h,r_t) by

(7.2.2) y(h,r_t) = Y(r,t,th/F(h+l), for h > -i.

It follows from (7.2.1) that

(7.2.3) y(h,r_t) = [r(l-_/2)U_(r,t,th/r(h+l)]i_=2

= [F(l-_/2)u(_,h,r,t)]I_=2

the- r2/4t ¢ (h+l, i,r 2/4t ).

In obtaining the ....:, member of (7.2.3)_ we have used Theorem 5.1.

The final member of (7.2.3) is defined for all real h. It

provides an extension of the definition of y(h_r,t) given by

(7.2.2).
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Theorem 7.2.1.

(7.2.4)

then

(A)

If_ for h real_

y(h,r_t) = the -r2/4t _(h+l,l_r2/4t),

y(h,r_t) satisfies equation (2.6), when

(B)

and

(c)

lira y(h,r,t) -- O, if r J O,
t_0+

lim y(h,r,t) th

re0 -in r 2 = _ _
if t > O.

Proof of _%). This result follows from the remark

following the proof of Theorem 3.2, part (A).

Proof of (B). From (7.2.4) and (A-14), it follows that•

lim y(h,r,t) = lim the -r2/4t ¢(h+l,l,r2/4t) = O, if r _ O.

t_0+ t*O+

Proof of (C). From (7.2.4), we have

-r2/4t (h+l,l,r2/4tlim y(h,r,t) = t h lime , )
2 2 "

reO -in r re0 -in r

For t > O, use Table 2, (d), with a = h + i, to evaluate the

limit on the right. We then obtain result (C).

In order to determine which solutions of equation (2.6) can
co

be represented in a series of the form u(r,t) = Z akY(k/2,r,t),
k=O

we need the following integral representation for y(m/2,r_t).

Theorem 7.2.2. If m = 0, i_ 2, ..., then
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(7.2.5)

co

Y(ml2_r_t) = exp(-r214t ) _ -z214t
tJ_ 0e ZKo(rZ/2t)

F (m/2+i/2) zm ]F(m/2+_/2) _. dz.

Proof. Combining definition (7.2.2) and the result (7.2.1)_

it follows that y(m/2,r,t) = [F(l-_/2)u(_,m/2,r,t) ]I_=2.

Formula (7.2.5) now follows from formula (3.15).

7.3 Expansion Theorems.

When _ = 2_ the following result corresponds to Theorem 5.1.

Theorem 7.9.1. A function y(r_t) has an expansion of the

form

GO

(7.3.1) y(r,t) = Z akY(k,r,t),
k=O

which converges for O < t < T_ if and only if

(7.3.2) y(r,t)= s_(r2/4t) _ z2/4t
t _/_ 0 e zK0(rz/2t)g(z)dz"

Here_

defined by

g(z) is an even entire function of growth

2k
F(k+i/2) z

(7.5.5) g(z)--z ak r(k + i)-_ "
k=0

(2,1/4T)

Proof. As in Theorem 5.1_ the proof depends upon the

validity of the term-by-te_va integration of the series (7.3.3)

after multiplication by e-Z2/4tzKo(rZ/2t). Since
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lim ZKo(rZ/2t ) = lim ZKo(rZ/2t ) = O_ if r _ O_ this term-by-term
z-_ z_O

integration is valid for 0 < t < T if g(z) has growth

(2_1/4T). In the proof of necessity_ this is part of the

hypothesis_ in the proof of sufficiency, this fact is proved by

applying Stirling's formula to the coefficients in the series

(7.3.1).

The companion result_ for expansion valid for 0 < t < _ is

given by

co

Theorem 7.3.2. Let [ak]k= 0 be a sequence with the

= 2
property that lim sup 'fanII/n q . A function y(r,t) has an

II -_ co

expansion of the form (7.3.1)_ convergent for 0 < t < _, if and

only if (7.3.2) holds where g(z) is an even entire function of

growth (l_q) defined by (7.3.3).

In Theorem 7.3.1 (Theorem 7.3.2)_ it is clear the function

defined by the series (7.3.1) satisfies equation (2.6) when

= 2 for 0 < t < T, (0 < t < _). Moreover_ lira y(r,t) = 0

t*0+
co

and lim y(r,t) = Z tk
2 ak /k: in each theorem.

r*O -in r k=O

Analogous results are valid for expansions in terms of the

oo

set [y(k+i/2, r _t )}k=O"

7.4 Asymptotic Behavior.

When _ = 2_ the method used in Theorem 4.3 to examine the

asymptotic behavior of solutions of (2.6) does not apply. The

difficulty arises in the following way. From definition (7.1.1)
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and [7], P. 146, (29) , it follows that

(7.4.1) L[Y(r,t,f)] = 2Ko(r _ )_(s),

where Y(s) is the Laplace transform of f(t). From (7.4.1) we

find L[Y(r,t,f)] _ 2_(s)[-ln (r_)], as s _ 0+. Since L[Y]

has logarithmic behavior as s _ 0+, Theorem 4.2 cannot be used

t

to describe the asymptotic behavior of _^Y(r,T,f)dT, as t _.

However, analogous to Theorem 4.4, we have

Theorem 7.4.1. Let f(t) be absolutely integrable on

(0,T) for each T E (0,_). If h _ 0 and f(t) _ th/r(h+l) as

t _, then

(7.4.2) Y(r,t,f) _ y(h,r,t), r > 0, as t _.

Proof. By hypothesis f(t) : th/F(h+l) + c(t)t h where

c(t) -_0 as t ->_. Let cO > 0 be given. Choose M > 0 such

Set K(r,t) = t-le -r2/4t.that Ic(t)l < c0/F(h+l ) if t >_M.

For t > M we have

(7.4.2)
M

Y(r,t,f) = _0f(T)K(r,t-T)dT

+ _ + e(T)_ K(r,t-T)dT

T K(r,t-T)dT: -

t h t

+ _0 _ K(r,t-T)dT + _Me(T)ThK(r,t-T)dT
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T K(r,t-T)d_= y(h,r,t) + f(_) -

t

+ _MC(T )ThK(r,t-T )dT.

Consider K(r,t) as a function of t for fixed r. It has a

maximum when t = r2/4, and this maximum is 4/er 2. For r > O,

it follows that

ISo (T)-_ K(r,t-_)d_< Cliof(_)l+ _T d_< C2,

where C1 and C2 are positive constants depending on r.

Moreover, It(t) I < CO/r(h+l) when t >_ M so that

¢(_)ThK(r,t-T)dT < e0 _ K(r,t-T)dT = ¢0Y(h,r,t ).

Substituting these results into the last line of (7.4.2),we find

IY(r,t,f(t)) - Y(h,r,t) I < C2 + ¢0Y(h,r,t). Since y(h,r,t) > 0,

it follows that

(7.4.}) I Y(r,t,f(t)) - y(h,r,t) I C2y(h,r_t) < y(h,r,t) + CO"

From formula (7.2.4) and Table 2, (d), we have

I
lim y(h,r,t) =
t-_ _ lim th(-in (r2/4t)), if

t-_

Hence, if h _ O, it follows from (7.4.3) that

r>0.

(7.4.4) lim

t_

Y(r,t,f(t)) - y(h,r,t) I

y(h,r,t) I < cO.

Since c0 is arbitrary, the limit in (7.4.4) is zero. This

completes the proof.
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A BASIC FORM FOR SPECIAL SOLUTIONS

In a remark following the proof of Theorem 3.2, part (A)_ the

point was made that a solution of equation (2.6) is given by

(8.1) G(r,t) = cthe-ZF(h+_/2,_/2_z).

In this formulaj z = r2/4t, c is any parameter independent of

r and t, and F(a,b_z) is any confluent hypergeometric

function with parameters a and b. In sections 5 and 6_ it was

shown that certain solutions of the radial heat equation had valid

expansions in terms of the set of radial time functions

[u(_,m/2_r_t)]m= 0. Each element in this set has the form (8.1).

There are other expansion theories for solutions of (2.6). Each

theory uses one or more sets of special solutions. In this

section_ we introduce several of these sets_ and indicate the

major results of the theory associated with each set. We then

show that the elements of these several sets all have the form

(8.1).

When _ = i_ equation (2.6) reduces to the one-dimensional

heat equation. P.C. Rosenbloom and D.V. Widder [12] have made a

detailed study of the validity of expansions of solutions of this

equation in terms of two sets of special solutions. The first is

the set of heat polynomials [Vn(r,t)]n= 0 defined by

69
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(8.2) Vn(r,t) = (-t)n/2Hn(r(-4t)-i/2), - _ < r < _,

-_<t<_,

where _(z) is the Hermite polynomial of degree k. The

second is the set of associated functions [Wn(r,t))n= 0 where

(8.3) Wn(r,t) = (4_t)-i/2exp(-r2/4t)Vn(r/t,-i/t),

- _ < r <_, 0 < t <_.

The authors develop the following basic theore_ regarding

expansions for solutions of the heat equation:

(I) Expansions in terms of heat polynomials are valid in a

time strip, Itl < _, in which the solution u(r,t) satisfies

a Huygen's principle. That is,

-1/2

= _ [4_(t-t') ] exp[-(r-y)2/4(t-t ')]u(y,t' )dy, for allu(_,t )

t and t' such that - q < t' < t < _.

(II) Expansions in terms of associated functions are valid

in a half-plane t > q > 0 in which the solution has certain
u

entireness properties.

Several rules for determining the coefficients in these

expansions are given. The L2 theory of such expansions is also

examined.

L.R. Br_gg [2] has developed results analogous to (I) and

(II) for expansions of solutions of (2.6) when _ > i. Again, the

theory is developed in terms of two sets of special solutions:

(a) the set [Rk(r,t)}k= 0 of radlal heat polynomials and (b) the

set [ (r_t))k= 0 of associated functions. The elements of the
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first set are defined by

(8.4) R_(r,t)= k_(4t_/2-1_(-r2/4t),

L(a)(z) is the generalized Laguerre polynomial of order
m

is defined

where

n with exponent a. The associated function __(r,t)

to be the Appell transform of R_(r_t). That is

(8.5) R_(r_t) = A[R_(r_t)] = S (r_t)R_(r/t_-i/t).

Underlying the expansion theorems for the radial heat polynomials

is an integral representation for solutions of the initial

value problem.

(8.6) { [D_+ (_AlDrlu(r,t)D_u(r,t),u > 1
u(r,O) = _(r), r > O.

In subsequent papers_ L.R. Bragg has related the particular form

of solution of (8.6) used in [2] to Laplace transforms and their

inverses [3]. These results have been used [4] to examine the

character of solutions of (8.6) when the function _(r) has a

pole at r = O_ but is otherwise entire.

The expansion theorems given in [2] were discovered

independently by D.T. Haimo [8] who also developed analogous

results for the L 2 theory of expansions when _ > i [9]. In

[8] and [9] the special sets of solution functions are denoted

[Pn_g_l)/2(r,t))_= 0 and [Wn,(__l)/2(r,t)] _n=O" These special

solutions are related to Bragg's radial heat polynomials and
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associated functions as follows:

Pn,(__l)/2(r,t) = R_(r,t)

(8.8) Wn,(__l)/2(r,t) = _(r,t).

We now review some expansion theories for solutions of the

initial value problem

D2u(r,t)= Dtu(r,t )(8.9) u(r,o) = o, r > o;
u(0, t) = f(t), t>O.

H. Poritsky and R.A. Powell [Ii] studied the set of

solution functions [Tn(r,t))n= 0 where

t

(8.10) Tn(r,t) = 2 _0Sl(r,t-y)yn/ ,
n. dy.

Here Tn(r,t0) represents the temperature in the infinite rod

0 ! r < _ in which Tn(r,0) = 0 if r > 0 and heat is

liberated at the rate tn/n! per unit time from t = 0 to

t = tO at the point r = 0. The authors show that

Tn(r,t) = tn+l/2/r(n+3/2). Moreover,

t

(8.11) Tn(r,t ) = f0r(t_y)-iSl(r,t_y)Tn(0,y)dy.

D.V. Widder [14] defined a related set of solution functions

[Un(r,t)]n= 0 by setting

t

(8.12) U(r,t) for(t_y)-i n= Sl(r,t-y)y /n! dyo
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He then examined what solutions of the problem (8.9) have

expansions of the form u(r_t) = _ [anUn(r,t) + bn nT (r,t)]. The
n=O

main results of [14] are obtained by setting _ = i in Theorem

5.3 and Theorem 6.3.

Let us now examine how formula (8.1) relates to the special

solutions which have been mentioned in this section.

Theorem 8.1. For appropriate choices of c_ h_ _ and F

(see Table i), the special solutions mentioned in this section

have the form (8.1).
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:a)

:b)

_c)

(d)

(e)

if)

TABLE 1

2
G(r,t) = cthe-ZF(h+_/2,_/2, z), where z = r /4t.

Author G(r,t)

P. C.Ros enbloom

and D .V.Widder

L.R. Bragg

H. Poritsky &

R.A. Powell;

D.V. Widder

D.V. Widder

Vn(r,t)

R_n(r,t)

Tn(r,t)

_n(r,t)

i

i

_>i

b>l

i

I

h

I

n/2 1

(n+l]l
- _-'_--,

n

-(n_)

n+i/2

n

c F(h+_/2,_/2,_,)

(_4)n/2

(4_)-_4n/2

(-4) n

-1/2

-1/2

eZg(-h,t_/2_-z)

eZ¢(-h,l_/2,-z)

_(h+_/2,Wmz)

,_(h+v./2,_/m_.)

NOTE: _(h+l_/2,1_/2, z) and eZ_(-h,l_/2,-z)are confluent

hypergeometric functions with parameters h+_/2 and

_/2. They are linearly independent functions for

all choices of h and _ (see the Appendix,

formula (A-8)).

Proof of Table i_ _ We must show that

(8.13) Vn(r,t) = (-l)n/24n/2tn/2_(-n/2,1/2,-z) •
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Case I.

becomes

(8.14)

Let n = 2m; with m = 0; !; 2; ....

V2m(r;t) = (-l)m4mtmt(-m;i/2;-z).

Using the identity (A-12) and the fact that

L(-i/2)(z) = (-l)n _ ), it follows that
n n: 4n H2n (

(8.15) V2m = (-t)mH2m ((-z)I/2).

Formula (8.i})

Since z : r2/4t; formulas (8.15) and (8.2) are now identical.

Case II. Let n = 2m + i; with m : 0; i; 2; .... Formula

(8.13) becomes

(8.16) V2m+l(r;t) = (-l)m+i/24m+i/2tm+i/29(-m-i/2;i/2,-z).

Applying (A-9) with a = -m - 1/2, and b : 1/2, it follows that

(8.17) V2m+l(r;t) = (-l)m+I/24m+i/2t m+I/2 (-z)i/29(-m,3/2,-z).

Using identity (A-12) and the fact that

(-1) n .,

L(i/2)(Z)n = n.-_22n+lzl/2. H2n+l(zl/2), we obtain

(8.18) V2m+l(r,t) : (-t)m+i/2H2m+l ((-z)i/2).

Now; formulas (8.2) and (8.18) are identical. This completes the

proof of Table l, (a).

Proof of Table i, (b). Substitute (8.13) into (8.3), the

definition of Wn(r;t). It follows that
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(8.19) Wn(r,t) = (4_t)-i/2exp (-r2/4t)Vn(r/t_-i/t)

tn+l_

= (4_)'i/24nt-_-_-}e-Z_(_n/2_i/2, z).

This is exactly the result given in Table i, (b).

Proof of Table i, (c). We must show that

(8.20) R_(r,t) = (-4)ntn¢ (-n_ _/2,-z).

It follows from the identity (A-12) that

(8.21) R_(r,t) = (4t)nn! L(_/2-1)(-Z)n

This is the definition for R_(r,t) given by (8.4).

Proof of Table i, (d). This result follows from definition

(8.5) and the representation for R_(r,t) given in Table i, (c).

Proof of Table i_ (e) and (f). The functions T (r,t) andn

Un(r,t ) are defined in (8.11) and (8.12) respectively.

Comparing these definitions with formula (2.13) and using formula

(3.1), we find

Tn(r,t ) = Ul(r,t,tn+i/2/F(n+3/2)) = u(l,n÷i/2jr,t)(8.22)

and

(8.23) Un(r,t) ='Ul(r,t,tn/n') = u(l,n,r,t).

It follows from Theorem 3.1_ that

(8.24)

and

Tn(r,t ) = _'l/2tn+l/2e-Z_(n+l,1/2, z),
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(8.25) Un(r,t ) = _-i/2tne-Z_(n+i/2,1/2,z).

These are exactly the entries in Table i, (e) and (f).

If the set [u(_,m/2,r,t)} appeared in Table i, the entry

would have the following form

G(r,t) _ h c F(h+_/2, S/2; z)(8.26) u(_,m/2,r:t) [F (I-s/2) ]-I ¢(h+_/2,S/2,z)

Comparing (8.26) with Table i, (b) and (d), one is led to

suspect that u(_m/2,r,t) is also an "associated" function.

Here, the word "associated" is used in the sense that there

exists a function W(_,m/2,r,t) such that the Appell transform of

W (denoted A[w]) is equal to u(_,m/2,r,t). This is, in fact,

the case. In the notation of Table i, define the set

co

(w(_,m/2,_,t)}m=o

r m

(8.27)iw(_,_,r,t)

as follows

h

m
r<2 -(7 + 7)

C

(4_)7(-m)h[r(m-_)]-m

F(h+ _ _

eZ_(-h,_,-z)

Then _ (m+u

(8.28) W(_,m/2,r,t) = (4_)7/2(_tj-,-_--,u
r(l-_/27

and

I:m+_
_k-_--,t_//2,-z),

(8.29) A[w] = Sl_(r,t)W(la,m/2,r/t,-1/t ) = u(la_m/2,r,t,).

There is an important difference between the pair of functions
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W(_;m/2;r;t); u(_;m/2;r;t) and the pair R_(r;t)_ R_(r;t).

The latter pair are both real valued functions while the

function W(_;m/2;r_t) is always complex valued if t > 0.

When _ _ 0; -2; -4; ... ; this fact follows from formula (A-7).

When _ : O; -2; -4; ... ; formulas [i]_ p. 504_ (13.1.6) and

(13.1.7) show that W(_m/2,r_t) is still complex valued.



SUMMARY

D.V. Widder [12] has developed necessary and sufficient

conditions for the validity of expansions of solutions of the

one-dimensional heat equation.

In this thesiss we have developed comparable expansion

(rstsf) and V (rstsf)s which aretheorems for the functions U

solutions of the radial heat equation [D2+ _ - i•r r Dr ]U(rst) =

Dtu(rst)s for _ < 2 and _ > 2 respectively. Necessary and

sufficient conditions were developed under which the function

U (rstsf) could be represented in terms of the set of radial

time functions [u(_sh,rst)]. The asymptotic behavior of

U (r,tsf) and t-l_]u (rsysf)dy was examined and related to the

behavior of f(t)s its Laplace transform s and to certain radial

time functions. Using the identity U2_a(rstsf ) = r-aV2+a(rstsf),

a > 0s these results were extended to the function V (rstsf).

When _ = 2s solutions of the radial heat equation with

logarithmic singularities in a neighborhood of r = 0• were

obtained by modifying the definition of U (rstsf). The methods

used to examine series representations and asymptotic behavior for

h(rstsf) when _ < 2 were also modified to obtain similar

results when _ = 2.

Finallys it was proved that the elements of several sets of

special solutions of the radial heat equation s including the

radial time f_nctions s have a con_aonform.
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APPENDIX

CONFLUENT HYPERGEOM_TRIC FUNCTIONS

We collect her% for reference_ the results about confluent

hypergeometric functions which have been used earlier. These

results are taken from [i], Chapter 13_ and [6]_ Chapter 6.

The confluent hypergeometric equation is given by

d2Y (b-_)dy(A-l) z -- + - ay = 0.
dz2 _

This equation has a regular singular point at z = 0 and an

irregular singular point at z = _. Any solution of (A-I) is

defined to be a confluent hypergeometric function with parameters

a and b. For the purposes of this paper_ the parameters a

and b are restricted to real values. The literature on

confluent hypergeometric functions is developed in terms of two

solutions of (A-I) which are denoted by

(A-2)

and

(A-3)

Yl = ¢(a,b,z)

Y2 = ¢(a,b,z).

Another solution of equation (A-I) is given by

(A-4) Y3 = eZ_(b-a'b'-_)"

The solution functions Yl and Y2 can be represented by

generalized hypergeometric series as follows:

82
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(A-5)

and

(A-6)

¢(a,b,z) = iFl(aTbTz), z > O,

_(a,b,_)-- _-a2FO(a,l+a-b_-l/_), z>0.

The function ,(a_b,z) is a multi-valued function of z.

We usually consider its principal branch in the plane cut along

the negative real axis. However, define f(-z+iO) as the limit

of f(-z+i_) as _ * 0 through positive values, and define

f(-z-iO) similarly. Then

(A-7) ,(a,b,-z+_0 e-ZF F(l-b)
"- ) = [r(l-b+a_@(b-a,b, z)

rr_ $i_b 1-b )]- e _ ®(1-a,2-b,_ , b#0,+_l,+_2,..o;

where z > 0 and either upper or lower signs are to be taken

throughout.

The solutions (A-3) and (A-4) are linearly independent for

all values of the parameters a and b_ since the wronskian of

the pair is given by

-_i(b-a)-b z
(A-8) W(y2,y3) --e _ e .

The Kummer transformation for ,(a,b,z)

identity

l-b,(A-9) ,(a,b,z) = z (l+a-b,2-b,z).

is given by the

There are numerous integral representations for ,(a,b,z).
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The two that we require are given by

2z (l-b)/2 f -t a-b/2-1/2 _ - )1/2

(A-10) ¢(a,b,z) = r(a)r(a_b+l)J0e t __i[2(zt ]dr,

for a > 0, a - b > -i, and

Z

(A-If) _(a,b,z) = F-_a-_e7 e-Zt(t-l)a-ltb-a-ldt_ for a > 0.
i

Let

order a

L(b)(z) denote the generalized Laguerre polynomial of
a

_ith exponent b. Then

(A-!2) 9(-n,a+l,z) : (-l)nn:L (a)(z), a > -i and n:0,1,2, ....
n

Moreover, combining formulas (A-9) and (A-12), it follows that

(A-13) _(a,a+n+l,z) = z-a-n(-l)nn!L(-a-n)(z),-(a+n)>-i
n

and n = O_ 1_ 2, ....

From (A-5), we find that

(A-14) _(a,b,z) = z-a[l+01zl-l], as z * _.

For small z, the behavior of _(a_b,z)

Table 2.

is indicated in
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TABLE 2

_(a,b_z) = F(a,b_z) + O(g(z))_ for small z.

• !

(a)l

b

b>2

(b)l b= 2

(o)i1<b<2
......-...--+

(_)l b - i
, l

(e)lO<b<l

F(a,b_z)

l-b
z r (b-m)

r(a)

-ln z/F (a)

Izlb-2

Iln z

1

Izinzl

(g)1

b=O

b<O

Iz In z I

IzI -


